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The analysis methods described to date for N electron spin
echo envelope modulation (ESEEM) mostly deal with isotropic g-
and *N hyperfine coupling tensors. However, many cases of rhom-
bic tensors are encountered. In the present report we present
general equations for analyzing orientation-selective ESEEM and
illustrate their use. (i) We present general equations for the nuclear
interactions in an electron spin system where the EPR signal arises
from an isolated Kramers doublet, then give the nuclear (electron-
nuclear double resonance) frequencies for I = 1 associated with
such a system. (ii) These are incorporated into equations for
single-crystal ESEEM amplitudes, which in turn are incorporated
into general equations for the orientation-selective ESEEM that
arises when the EPR envelope of a frozen-solution (powder) sam-
ple is determined by g anisotropy. (iii) This development is first
used in the simplest limit of an isotropic g-tensor and leads to a
more general picture of the response of the I = 1 modulation
amplitude to variations in the nuclear hyperfine and quadrupole
coupling constants, relative to the nuclear Zeeman interaction,
than had been presented previously. We find that strong modula-
tion occurs not only in the well-known regime where the “exact/
near cancellation” condition (A/2 ~ wy) is satisfied, but also when
the nuclear hyperfine interaction is much larger than the nuclear
Zeeman interaction (A/vy > 3) with A/IK = 4 ~ 5. (iv) We then
describe the orientation-selective N ESEEM frequency-domain
patterns (g vs frequency) in the presence of anisotropic (rhombic)
hyperfine and electron Zeeman interactions for both coaxial and
noncoaxial cases. We derive analytical solutions when the g-,
hyperfine, and nuclear quadrupole tensors are coaxial. (v) The
method is applied to the ESEEM of the nitrogenase MoFe protein
(Avl) to determine the full hyperfine and nuclear quadrupole
tensors of N nuclei interacting with the S = 2 FeMo-cofactor
(Fe;SgMo: homocitrate). © 1999 Academic Press

Key Words: pulsed EPR; ESEEM; *N; electron spin echo enve-
lope modulation; orientation-selective.

INTRODUCTION

electron spin echo envelope modulation (ESEER))lays a
vital role in chemistry and biochemistry. The observation o
such interactions identifies the nuclei that make up an acti
site, and determination of the interaction tensors reveals deta
of its bonding and metrical structure. The methods for obtair
ing these nuclear interaction tensors from data collected wi
randomly oriented (powder, or frozen-solution) samples hav
been extensively developed for ENDOR, 8—5, but less so
for ESEEM. This lack is of particular importance for analysis
of the signals from a“N nucleus [ = 1) coupled to an
electron spin, because nitrogen is one of the most extensive
studied nuclei in ESEEM. At present there is no genere
treatment of ESEEM for a frozen-solution (powder) paramag
netic center whose EPR spectrum is determined by an anis
tropic g-tensor, and which incorporates b= 1 nucleus that
experiences nuclear Zeeman and quadrupole interactions,
well as an anisotropic hyperfine coupling. An ESEEM (ot
ENDOR) spectrum collected at a fixed field is “orientation-
selective” in that it results from only a well-defined subset o
molecular (org-tensor) orientations relative to the external
magnetic field. Techniques have been described for extracti
the full anisotropic nuclear hyperfine and quadrupole tenso
from the 2D, ENDOR frequency vs field, pattern of ENDOR
spectra collected at numerous fields across the EPR envelc
(1, 3-5. In this report we apply the same approach to obtail
the general equations for analyzing orientation-selective
ESEEM and illustrate their use.

The background to the present report includes Mims’ der
vation of the complete density matrix of the electron spin ech
modulation effect®, 7), along with published methods for the
analysis of ESEEM of = 1 nuclei, with emphasis on isotropic
g- and hyperfine tensors. Based on Muha'’s analytic solution 1
the problem of anl = 1 nucleus undergoing quadrupole
interactions in an arbitrary magnetic field, @), Astashkinet
al. developed a qualitative analysis method in the frequenc

Characterization of the hyperfine and nuclear quadrup@iemain for*“N ESEEM, but this is limited to weakly aniso-
coupling tensors for metallobiomolecules and free radicai®pic hyperfine interactionsl(). Flanagan and Singel illus-

through electron-nuclear double resonance (ENDQR}ROd

trated the relationships between ESEEM peak amplitudes a
the orientation of the external magnetic field relative to th

1 To whom correspondence should be addressed. Fax: 847-491-7729clear quadrupole tensor frame for the case of isotropic h
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perfine coupling 11). Effects of anisotropic hyperfine interac-
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tions were examined in the frequency domain for orientationitrogenase MoFe proteinAy1) to determine the full hyper-
ally disordered systems with an isotrogj¢ensor by Reijerse fine and nuclear quadrupole tensors*® nuclei interacting
and Keijers 12). More recently, analytical solutions werewith the S = 2 FeMo-cofactor (FgS;Mo: homocitrate)
described for cases of weak nuclear quadrupole coupling, s§28, 23.
as ’H (13). However, this treatment is not suitable f&N
where the nuclear quadrupole coupling is strong compared to
the nuclear Zeeman and the hyperfine interactions.

Some orientation-selectivéd and’H ESEEM experiments . . . .
have been reported 4173, but only a few cases have been (i-a). Nuclear interactions for S= 5. When an electron

. . 1 o1 )
published for**N ESEEM. Flanagaret al. constructed the Spin ofS = 5 COUpI?d toa nucleus of spin z1s place.d n

S - . . an external magnetic fieltH ,, the total magnetic interaction of
magnetic field profile of the amplitude ratios of two-puléd

ESEEM peaks across the EPR absorption envelope of mercthaé- system s des_crlbed by a Hamiltonian that includes t
. . . “electron Zeeman interactior¥¢(¢), the nuclear Zeeman and
toethanol complex of low spin Fe(lll) myoglobin to determin

the orientation of thé*N nuclear quadrupole tensor axis of th;ﬁyperflne couplings ), and the nuclear quadrupole cou-

proximal imidazole ring with respect tg-tensor axis 18). pling (%) (1,24, 29.

Also, van Damet al. applied the same approach to derive the

"N tensor components of the remote nitrogen in Cu-imidazole ¥ = F.+ o + K, [1]
systems 19). But these reports in fact relied on a nearly

isotropic hyperfine coupling. Analytical solutionsgtandg ,

positions for oxovanadium complexes were derived to extra¢fere

“N tensors 20, 21). Here, the™N hyperfine couplings are

THEORY AND APPLICATION

largely isotropic and the anisotropic interaction was treated as %= B.S-g-H 2]
a perturbation. e e o
In the present paper, we develop for the first time a system- Hie= —0nPBul - Ho+ hl - A-S, 13]

atic approach that permits the determinatiort‘df tensors for

systems wherg- and the hyperfine tensors are dominated by

anisotropic (rhombic) interactions, and thus where the earli@?

methods are not applicable. To do that, (i) we present general

equations for the nuclear interactions in an electron-spin sys- Y =hl-P-I. [4]
tem where the EPR signal arises from an isolated Kramers !

doublet, then give the nuclear (ENDOR) frequencied fer 1

associated with such a system. (ii) These are incorporated ihtere B, g, g, Bn: h, A, andP are the Bohr magneton, the
equations for single-crystal ESEEM amplitudes, which in turelectrong-tensor, the nuclear g-value, the nuclear magnetol
are incorporated into general equations for the orientatioRlanck’s constant, the hyperfine coupling tensor, and the n
selective ESEEM that arises when the EPR envelope ofclegar quadrupole coupling tensor, respectively; each interactic
frozen-solution (powder) sample is determined by g anisatatrix (g, A, P) is diagonal in its own reference frame. For the
ropy. (iii) This development is first used in the simplest limit ofelatively small nuclear interactions of interest here, compare
an isotropicg-tensor to examine how thie = 1 modulation to the electron Zeeman interaction (high field approximatior
amplitudes respond as the nuclear hyperfine and quadrupele= g.B.H./h > A, P, vy = gyByH/h), there is no loss in
coupling constants are varied relative to the nuclear Zeemgnoring off-diagonal matrix elements in the electron spin. Ir
interaction, thereby allowing us to draw a more general pictutigis case, the nuclear spin Hamiltonian governing ESEEM ar
of the behavior of the modulation amplitude than has be&NDOR frequencies within the individual electron-spin man.
presented previously. We find that strong net modulation oifelds, m; = +3, is described by the sum of the nuclear
curs not only in the well-known regime where the “exact/neateeman, hyperfine, and nuclear quadrupole interactions,
cancellation” condition is satisfied, but also when the nuclear
hyperfine interaction is much larger than the nuclear Zeeman
interaction and the nuclear quadrupole coupling constant is
comparable to the hyperfine coupling constant. (iv) We then

describe the orientation-selectivéN ESEEM frequency-do-  The first step in deriving ESEEM/ENDOR frequencies be

main patterns (g vs frequency) in the presence of anisotroigs with the expression of the nuclear Zeeman and hyperfi
(rhombic) hyperfineand electron Zeeman interactions for bothyieractions in the electrog-tensor frame 1)

coaxial and noncoaxial cases. We derive analytical solutions
when theg-, hyperfine, and nuclear quadrupole tensors are
coaxial. (v) The method is applied to the ESEEM of the . = hl -[(£1/2)°A - 9/Qer — vy -1 =hl - T, [6]

Hne = Hipps + %qi- [5]
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where by ag’-tensor that is coaxial with the fine-structure interactior
(Eq. [8]), with

(x1/2) 2 , ,
= > gleA; — ml; fori=1,2,3. [7] g,=9, [10]

j=1

i+

B geh‘
Oy = 9.[1+ (1 = 3[AP)/(1 + 3A%) 7. [11]

Here, °A and is the hyperfine tensor matrix transformed

into the g-tensor frame by a rotation matrid (a, B, y) For Avl, the experimentally measured principal values
which is defined as the matrix that rotatgsinto the A Gky. = (4.33, 3.77, 2.01)orrespond to & = § represen-
frame €A = M ' - A - M) (26, 27; g is the experi- tation whereg, = 2.01,g, = 2.005, and\| = 0.053.
mental g-value of observationy, the nuclear Larmor The nuclear quadrupole interaction is independent of ele
frequency ¢y = guBnH./h); andl is a unit vector along tron spin and is unchanged, comparecbte 1. The hyperfine
H,, written as direction-cosines with respect to thé&lamiltonian can be transformed to the fictitious spin by the
g-frame. Wigner—Eckart theoren24),

(i-b). Nuclear interactions for S= 3. The above treat-
ment can be readily generalized to the case of a half-integer g9¢ — . 9a.5=h3 JWES
electron-spin systemS > 3 where the EPR signal comes

from an isolated Kramers doublet, and can be treated in =hl-A"-S =h3SA[IS  (A) = %A;q//g;)

terms of a fictitious spinS' = 3 with Zeeman interaction

given by @4). =hl-(°A-9")-S" (8f = 8;9/9)- [12]
o= BS - g’ - H,. [8] Here, °A is the hyperfine tensor transformed ingd-tensor

reference frame. Note that the transformatioitantroduces
. . . [
The principal values of thg’'-tensor are determined by thefam‘.‘:'m.rOpIC be_h avior .|nto th(.:" hyperfine mteracuon even if th
: . . _“intrinsic coupling is isotropic. For example, an intrinsically
details of the electron-spin system and could be taken as input . . .
ISQtropic coupling constant of 1.00 MHz would result in a
for the treatment presented here. For concreteness, we here

illustrate the approach with the specific caseSof 2, which n:?na::siu;?(\i/;zgegwlezte[gsﬁ,,;h;(t) V\iog(lg Eﬂi’inclz?rt;pgnv;:tnh
applies to the nitrogenase MoFe prote#w(l), whose resting P P T P 9

state exhibits ar8 = 3 EPR signal arising from the FeMo—to g = [4'3’_3'18' 2.0]. . .
For anS = 3 system, the nuclear Zeeman interaction cal
cofactor clusterZ8).

A high-spin EPR spectrum can be described by the Ham sually be taken as a scalar coupliig,, = —guBul + Ho.

-IVi = +1 igh-spi
tonians of the zero-field splitting/{,;) and the electron Zee- f—iowever, the IOW lyingm, 2 .double.t of a high-spin
. . system can experience a large, anisotropic pseudonuclear Z
man interaction ¥.) as @4)

man effect 24) caused by field-induced coupling to the high-
lying doublet. Hence, the nuclear Zeeman interaction is de
H = Hys + He scribed by an effective nucleg’-tensor coincident with the
zero-field splitting tensor axig(-tensor),
= [D(SZ - S(S+ 1)/3) + E(S: — S))]

+B:S- g He. [9] Hoz= —Bnl - gN *Ho, [13]

Here,D andE are the axial and rhombic zero-field splittingwhere for nitrogenaseS(= %)

parameters and the rhombicity is measured\by E/D = 3;

g is the g-tensor describing the Zeeman interaction and the

other symbols have the usual meaning. Bor 2 spin state, i = Onl8; + 3/2(geBdGnpn) (PA/A)(1 — 8)]  [14]
two Kramers doublets are separateddy= 2D(1 + 3A%)"?

in zero magpnetic field. Since the separatibn= 12.2 cm” pger the simplification of setting = 0. The sum of the

for nitrogenaseAvl is large compared both ta,T at experi- . clear hyperfine and Zeeman Hamiltonian ®r = % is
mental liquid-helium temperature and to the electron Zeemgi.p,

interaction at 9 GHz, the EPR spectrumAfl represents the
transitions only in the lowem, = +3 doublet 9). As a result
it can be represented by a fictitious sj8h = % characterized Hi==h1-A"-S" = Byl - gN-H,=hl-T. [15]
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where, for nitrogenase in particular, and
(%172 i | Ue = [K(1 = n) = pe]. [28]
g 2
=t The nuclear transition frequencies observed by ESEEM/EN
o 39eBAI(1 — 3i,) DOR are then straightforwardly written a8) (
X ngij — VN 6”- + W s
] 4 1/2

fori =1, 2, 3(orx,y, 2). [16] Ve = Vjw — Vs = <|p|) cog(B. + nm)/3]
. 14 . . . . -
(i-c). “'N modulation frequencies and amplitudesf we define n=k+k' =1,2 3K <Kk, [29]

the rotation matrix,=, that rotates they-frame into the nuclear
quadrupole frame, the vectdr,., can be reexpressed in the nucleaA

uadrupole axis system, and the nuclear Hamiltonian becomesssuminga-function EPR and ESEEM linewidths, then for a
q P Y ' Single molecular orientation the two-pulse ESEEM intensitie

(modulation depths) at the fundamental nuclear transition fre

Hin = 1= A, [17] quencies are§ 7)
where
Aizail'rt- [18] IE/%ZH):%E |q>|:r+'q)i—|2|(blj’+'(bi—|2, [30]
i=0
The overall nuclear Hamiltonian operator describing ESEEM, ,
expressed in the nuclear quadrupole axis system, then is given b
b aractp Y WD e =33 of @ [0 - |2 [31]
Hne=hl-A.+hl-P-1 [19] e

n=k+k' =1, 2, 3k <k);

=h[Alx+ Apely+ Agelz + K(1 — 71)|>2<
m=I1+1"=1,23I"<l);k k/,I,I"=0,1, 2.

+ K(1+ 12— 2KI2], [20]
, ) ~The combination (sum or difference) frequencies can be di
whereK = e°qQ/4 andn is the asymmetry parameter. Thisscriped, but are not discussed here. The corresponding inte

leads to the Hamiltonian matrix2§), sities in three-pulse ESEEM ar8, (7)
K(1—-m) Ase A, )
A B G B AN B YT TR ST paY
—iA,. A —2K i=0
in the basis|Ty), |T,), and|T,), the pure nuclear quadrupole , 3 X
eigenstates. Muha has provided the exact eigenvalues) ( +3 2 RA(DL D) (D Dyo)
and eigenvectorsl{,..) of the matrix (Eq. [21]) 8, 9, 25: m=1
X (q);+ . CI)l,_)*((D;,Jr : (DI—)]COS(ZWVm—T)a
Ve = (3]p-])Y%cod(B. + 27wk)/3], fork =0, 1, 2, [22] 32]
AltASt - iAz:Vk: 2
D, = N. ArU:_iArAr 23
. B iAZl;‘FVki—ZUkj = |<f(’3n7):%§0|¢>L-<I>|,|2|<I>i*+-d>|_|2
whereN.. is the normalization factor, 3
+ % E Rd:(q);; : q)lf)*(q);; : (I)I’—)
B = cos [(3/|p.))**q./2)], [24] n=1
p. = —[K*3+ 1% + A2 + A% + AL],  [29] X (D @y )* (D, - D) ]cod 27y, 1),
0. = —K[2K*(1 — %) + (1 — n)AL [33]
+(1+ A% — 2A5.], [26) n=k+k =1,2, 3k <k);

Vi = [K(1+ 1) — v ], [27] m=1+1'"=1,2,3"<1);k k',I,I'=0, 1, 2.
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(ii). Expressions for orientation-selective ESEEMIhe ESEEM for this case have been developed extensive
previous equations present ESEEM/ENDOR frequencies (K0, 11). However, our new approach discloses a new regim
[29]) and ESEEM intensities (Egs. [30]-[33]) for a singlavhich exhibits strong modulation, in addition to the well-
orientation. An orientation-selective ESEEM signal obtained khown exact/near cancellation regime. We first describe tf
a given g-value from a powder sample whose EPR envelopériaditional method as background, then present our approac
determined by g-anisotropy arises from the well-defined subsetn the case of isotropig- and hyperfine tensors, there is no
of molecular orientations associated with the cursg,that orientation selection: all orientations contribute to the ESEEN
satisfyg® = g°(0, ¢) = gZsin’d cos¢ + gsin’d sin’p + spectrum. The nuclear spin Hamiltonian describing th
gZcos 6, whered and ¢ represent the orientation of the exterESEEM is obtained simply, by substituting. = (A/2 =
nal magnetic field with respect to tleetensor frame. If one v,)l in Eq. [19]. Here,A is the isotropic hyperfine coupling
takes ad-function component EPR linewidth(g’ — g), such constant and is the unit vector along the magnetic field,
an orientation-selective, frequency-domain ESEEM spectrierpressed with respect to the nuclear quadrupole frame. Usi
can be expressed as a sum of convolutions over the ESEBWUha’s solution, Astashkiret al. developed a graphical
ENDOR frequencies that arise on the cusg(1, 4), method to find the nuclear transition frequencies,as the

solution(s) of the equatior(x) = f(0, ¢) (8-10, where

(v, 9)
. F(x) ={2(1— 1% +3¥fx>-w?-3—n?]
=22 f L(v = va)los3(g' — Q)dor,  [34] X [Aw? + 43 + %) — X V3wE (38
" s f(6, ) = (3 — m cos 2p)cos’d + n cos 2p — 1,  [39]
whereL(x) is an ESEEM lineshape function ahg,., are the w= (A2 = v)lK, [40]

two- or three-pulse intensities (Eqgs. [30]-[33]). The factor of
47(=/ do) normalizes the equation. The area element assaid
ciated with an orientationd, g) is (1)

x = v/K. [41]

g sin’6 (¢, g)
dodg Here, 6 and ¢ represent the orientation of the external

oo~ (2 g2) casote. 9
magnetic field with respect to the nuclear quadrupole axi
= w(¢, g)dedg, [35] system. This method, which had been used previously in tt
_ ) ) study of electron triplet states(), is convenient for qual-
and thus Eq. [34] for the ESEEM intensity at a given g-valugative predictions of a‘N ESEEM pattern. Many systems
can be rewritten as studied by**N ESEEM showw < 1 in one electron-spin
manifold, butw > 1 in the other 2, 11). In an electron-spin
1 manifold with w < 1, the nuclear Zeeman and hyperfine
(v, @) =4~ > J L(v = vp)l (e W(d, 9)dep. [36] interactions are opposed and largely cancel, so that tt
no= Jg nuclear states are mostly determined by the nuclear qua
rupole coupling. All three nuclear transition lines from this
Note that this approach leads to the orientation-selective intenanifold usually have narrow peaks because the frequenci
sity being expressed as single integral along the cusye, are dominated by the nuclear quadrupole interaction and a
rather than a double integral over the sphere (Euler angledargely independent of the orientation of the magnetic fielo
and¢). When one takes into account a nonzero EPR linewidtlm contrast, the nuclear Zeeman and the hyperfine intera
the ESEEM intensity becomes tions are dominant in an electron-spin manifold with> 1,
so that the nuclear states are mostly nuclear spin-projecti
1 (m,) states. In this manifold, the single-quantum transition:
(v, g) = i > f j L(v = vp)lyne) (Am, = *=1) are dependent on the orientation of the mag
T o« netic field and a powder ESEEM spectrum, which is the sur

K of the transitions from all orientations of a randomly dis-
X w(é, g')R(g — g')d¢dg’, [37]  tributed sample, is broad and hard to observe. The doubl
guantum transition (dgAm, = =2), however, is only
whereR(x) is the component EPR lineshape function. weakly dependent on orientation even for this manifold, an

(iii). Isotropic g- and hyperfine tensors.We first apply the dq transition thus is narrow and readily detected. Be
these equations to reexamine the simplified situation of isotrwause the electron-spin echo is modulated with the nucle
pic g- and hyperfine tensors. The methods of analyziiy frequencies from both electron-spin manifolds (= *3),
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“N ESEEM commonly shows a four-line patten,(v_, v,, pole coupling constant, while those in tBemanifold are mostly
dg) whenw_ < 1,w, > 1; instead a two-line pattern (dg Zeeman states. This leads to large probabilities for the forbidd
dg.) arises wherw_, w, > 1. We ignore cases of smallEPR transitions and brings strong modulation. However, the it
nuclear interactionw_, w, < 1, because they give verytensity rapidly decreases far= 0.5, even aA = 2, because the
small modulation. nuclear states in both spin manifolds approach pure nuclear qu:
For isotropicg- and nuclear hyperfine tensors, the depemupole states in this cas&l). The new and interesting feature is
dence of the intensities and nuclear transition frequencies the strong intensities observed for the horizontal ridge alorg
the hyperfine and the nuclear quadrupole couplings can bé—-0.4 forA = 3. More extended calculation shows thatAoe
conveniently studied by reformulating the Hamiltonian matrig the horizontal ridge is approximated by a hyperblay(=A/

(Eq. [21]) as K) = 4 ~ 5. Although the figure is limited in the range Af< 10

- A | A | | -

1-n \7<i2—1)cos(9 |\7<t2—1>smesm¢
A A _

Hy- = hK \7<i2—1>cos(9 1+n \7<i2—1)sm6cosd) , [42]
(A o A _
—|\7(i2—1)sm03|n¢ v(i2—1>sm6cos¢ -2
V = vy/K, andA = Alv,. [43] andV = 10 for graphical representation, extended numerice

calculations over the ranges reveal the strong intensity ridgas of
~ 2 andA - V(=A/K) = 4 ~ 5 maintain their intensities indefi-

manifold is represented by the Hamiltonian makx, , andg by nitely in each direction but with a decreasing width of the ridge

. : __The shadedA, V] region in Fig. 2(B) gives rise to large net
ﬂ.“" O_andd) represent the orientation of the e_xternal magnetESEEM modulation amplitudes or depth, but the detection of tt
field with respect to the nuclear quadrupole axis system.

Figure 1 shows 3D views of the integrated frequenc %nodulation is strongly dependent not only on its amplitude, but als
o . " J h of th iti ly th in f |
domain intensity of each nuclear transition of bathand 8 N the breadth of the transition, namely the spread in frequenc

electron manifolds. defined as the intearal over all orientatio associated with the powder pattern. Figure 3 shows the breadths
Holcs, def S integ YRe three nuclear transitions in each electron-spin manifoldv For

~ 0, the nuclear states in both manifolds approach the pu
sin 6 i i
G — J J |2 dode, [44] nuclear quadrupole states, which are independent of the magn
b Yo

If one takesA = 0 for convenience, then the electron-spin

vt Aq field, and thus give narrow bands. In henanifold these nuclear
quadrupole states are also achieved wher 2 and again the
. ~ . . . _.___nuclear transitions are narrow. As the couplings move away frol
as a function oA andv. The intensities of the different transition Ping y
, the nuclear states becomestates, which are depen-

. . . dent on the magnetic field orientation, and . transitions
andv ~ 1. The trend can be examined more readily by mvest# g 1he v,..

ting th f the intensit f the th | : i Ive broad bands. But the sum frequencies & v,. + v,.) are
gating the sum ot the Itensities 2 |ne(i> ree nuciear transi IOW%akly dependent on the external magnetic field and have re

}N'th;]n ?\;‘/ electrﬁnlgwarllzlfoldl %:h n=1 t?]a'. ). Wh'(.:h ;SDth.e samz tively narrow breadths in both manifolds, as in Figs. 3C and 3F
or the two manifolds. Figure 2 shows this sum in VIWand as |, ihe time domain, the modulation from a nuclear transitior

a 2D contour map. As seen in the figure, the strongest intensities

are observed along the top of the roughly parabolic ridge con-

necting the coordinateg\(V) = (2, 10); (2.5, 1.5); and (10, 0.4). *Here, the sum frequency means the nuclear transition whose frequency
The vertical portion of the ridge, With ~ 2 (fOI’ V= 0_5)' the sum of the other two nuclear _transitipn frequencies in an electron-sp

corresponds to the well-known exact/near cancellation case.:@'fmd (e = Ve + vy.). In @ spin manifold where the nuclear states are
. . ) tly nuclear quadrupole states, this sum frequency correspomdsatal in

this case, the nuclear states in theanifold become pure nucleara spin manifold where the nuclear states arestates, this corresponds to

quadrupole states, which are independent of the nuclear quadeuble-quantum transition (dg).
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FIG. 1. 3D representation of the spherically averaged frequency-domain intengifi¢s (., sin 6/4m doéd¢) of nuclear ( = 1) transitions as a function
of V(= /K) andA (=A/vy). + and — represents the and 8 electron-spin manifoldsv, < v, < v, andv, = v, + .

with narrow breadth persists for a long time while the modulatiamanifold. However, cases where the horizontal ridge satisfies tl
of a broad band damps quickly. Hence, the broad bands aggerbola ofA - v = 4 ~ 5 (for A = 3) are likely to be detected
relatively difficult to detect in the time wave unless the spectroronly through the two sum frequencies.

eter dead-time is short. Comparing the intensities (modulationSimilar conclusions are reached when one takes an alternat
amplitudes) and the breadths of the transitions in the frequengiew of the possibility of detecting an ESEEM transition by
domain for a hyperfine coupling with the exact/near cancellati@alculating the maximum peak height of each transition as in Fi
value ofA ~ 2 (for v = 0.5) one expects to easily detect the threé. This figure represents the relative peak height of each nucle
transition lines of thex manifold and the sum frequency of tBe transition as a function ofy, V]; the procedure for generating such
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T indeed demonstrates many of these obseffddnodulations

(A) * near the horizontal branch of the hyperbdla,v = 4 ~ 5 and

I~ e NN R A = 3, as well as the vertical exact/near cancellation ridge
This horizontal regime appears to be analogous to the situati
in non-Kramers“N ESEEM at weak magnetic fields (@ 20
G), where™N gives strong modulations8{-33. The Larmor
frequencies at these fields are very small, and as a result st
systems exhibit larg& and tinyv values. The physical picture
and theoretical background for this horizontal ridge Withv
= 4 ~ 5 will be discussed in a future publicatioB4).

Intensity

(iv). Rhombic g- and hyperfine tensordn the above section,
thel = 1 modulation amplitude was investigated in the limit of ar
isotropicg-tensor where spherical averaging is applied. Howeve
a spin system with a significant rhombietensor requires the
collection of a full “2D” field-dependent (orientation-selective)
ESEEM or ENDOR pattern to find our the nuclear hyperfine
and quadrupole coupling tensotls 8—5. We first discuss the
simplest, nontrivial, case in whicy-, nuclear hyperfine, and
quadrupole tensors are coaxial. Then we generalize to honc
axial cases!N ESEEM patterns of a Kramers-doublet elec-
tron-spin system can be classified into two categories: or
wherew < 1 in one manifold (denoted) andw > 1 in the
other manifold (denoteg), and the other whene > 1 in both
manifolds. In this paper, we focus on the first case because t
ESEEM pattern of thgd manifold covers the second case.

<
PR (ZHIND X

(iv-a). Rhombic g- and hyperfine tensors (coaxial tensors
Figure 5A shows a contour plot of the calculated 2D pattern c
frequency vs g for thé'N frequency-domain ESEEM signal in

FIG. 2.' A) 3D representation and (B) 2D contqgr map of sum of the sphgrical{he case of coaxial-, hyperfine, and nuclear quadrupole ten-
averaged intensities of the three nucléa (1) transitions in an electron manifold sors, withA = [2.6 20 1.7] MHz,equ — 2.1 MHz, andn _

as a function off (=vy/K) andA (=Alw) S, [ [o 1%, sin 6/4m dodep). Note ) - ’ !
that!®,, = 19,19, , = 19, , (whenr = 0 for 3-pulse ESEEM), an8?, 19,, 0.6. Thea spin manifold wherew < 1 for all orientations

=33,19,in qu. [)30]—[33]. The shaded area in (B) representsAh@]value  shows three distinct peaks,( v;, andv, in Muha'’s notation,
e ik s o o e 25 i i e | gy G In conventiona notatin) across the EPF
goorginates of*N nuclei detectgd by ESEEND, Rieske centgr N24@l—43; o, envelope, while th@ manifold gives only the dOUbIe_qgamum
Rieske center N24@—486; <, peptide nitrogen hydrogenbonded to Fe-S clustetgeak as a dominant featqre became_> 1. The Sm_gle'
(48-50; #, methylimidazole coordinated to Co(ll)-hemBly;, 0, histidine quantum bands of thd manifold are omitted from the figure
bound to and CN, N; near Mn(lll)/Mn(IV) core in X-band §2); m, histidine because the transitions are broad, so that their intensities :
tboole ;oiﬁngef(lul?), rl:les n:\:% Mg(lg)lilhflr;(cl’\:igfi;e i:;fi?:j?;;bggd?f;mgq too weak to be analyzed in a real experimental situation exce
v, trp—tr':) quinon cofactor 'raéicaIS(i); A, remcp>te ni?rogens of 2—ethylthio‘—4— for ESEEM at the “smgle-c_rystgl-.llke” edges‘g’( and gZ)'
hydroxypterin 66), imidazole 67), and histidine bound to Cu(l1)58). Axes at Overall the ESEEM pattern Is similar to the well-knoWiN
upper and right sides of (B) represent the hyperfine couplingkanalues at ESEEM pattern of near cancellation where shagpvs, v,
X-band (3249 Gyy = 1.0 MHz). features are seen for thve < 1 («) manifold and only dq is
seen for the other manifold, but the rhombic hyperfine tensc
a 3D representation is depicted in the figure legend. Flanagan eadses additional features. In the full 2D display of g-value an
Singel (L1) thoroughly investigated exact cancellation and derivdtequency (Fig. 5A), the contour map of each band in éghe
the range over which the exact/near cancellation condition canrbanifold (v,, v,, andv;) spreads out at g-values away from the
usefully applied. While the plots in Figs. 1 to 4 include theisingle-crystal-like edgesy, andg,) and makes a “triangular”
findings, the figures give a more extensive picture of the changdmpe with the maximum breadth@t= g,.
of the intensities of the nuclear transitions as a functionAof] The three vertices are ab, 0.), (Vn, 9y), @and @n, 9,)
and the connectivity of two ridges of strong modulation. Note thin = 1, 2, 3] for eachwv, pattern corresponding to the
K in their paper is the reciprocal @f(K = 1A). orientation where the field lies along the principal axis orien
Figure 2B includes theA, V] coordinates for numerous tations of the tensors. The frequencies of the vertices a

systems that were previously detected Y ESEEM. The plot obtained in analytical form (Table 1) by adapting Muha’s
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FIG. 3. The breadths of the nuclear € 1) transitions arising from powder sample. The breadth was obtained, by v.,) of each nuclear transition
from powder pattern.

solutions in which the reference frame is the nuclear quadmxhibits a triangle-like shape with each edge of the triangl

pole axis 8, 9, 35. When one uses these equations in Table déorresponding to a peak in the spectra, and the frequencies

it is important to label the frequencies consistently. As seenlie obtained by Muha’s solution (Table 1).

Table 1,v, > v; > v, (Eq. [29]) always hold afj, independent  In orientation-selective ESEEM, just as in a spherically

of the relative size of the hyperfine, nuclear quadrupole coaveraged experiment, the ESEEM frequencies ofathreani-

plings, and the nuclear Larmor frequency, because® < 1 fold are sensitive to the nuclear quadrupole couplings but n

by definition. But at the other field positions, the relativéo the hyperfine couplings because the hyperfine couplings a

frequencies depend on the magnitude of the couplings. Heneeclear Zeeman interaction are largely canceled out, while t

even for correct assignment of nuclear transition bands, fiellly frequency in the3 electron spin state is sensitive to the

dependent ESEEM is often necessiryhe dg band also nuclear hyperfine interactions. Through use of the equations
Table 1, the nuclear quadrupole parameters for cogxjadhe

® Muha’s frequency assignment of, v,, v; bands always holds across the EPR
envelope wherw < 1 because the nuclear spin states are mostly the nucléar
quadrupole states. But, for the dq band where- 1, the nuclear spin states aretransition depends on the relative sizeswfand n. The dq v > 1) always

mostly m, states,|-1), [0), |+1), and the dg band corresponds to the outecorresponds te; except that it isv; for w(=|(—vy — A/2)K]) > (61 + 21"
transition,|—1) <> |+1). If we use Muha’s formulas, the assignment of the dalongy-axis, andv, for w(=|(—vy — AJ2)K|) > (9 — n?)"* alongz-axis.
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FIG. 4. The 3D representation of the maximum peak height of each nuclgar transition. The figure is constructed as follows. First, a histogram of the i
(12 sin 6/4) was built on a frequency-domain (unit K with given values of A, V]. Secondly, the histogram was convolu}ed with a Gaussian function wit
a finite half width (here 0.07 K). Then the maximum peak height was selected. This procedure was repeated as a fuA¢tign of [

nuclear hyperfine, and the quadrupole tensors can be calculassumptions of exact/near cancellation is seen as follow

directly from the frequencies measuredgatandg,, with According to the exact/near cancellation analysis where tt
low, middle, and high frequency peaks are assigned,to_,
K= (v« + v3.)/6, atg, [45] andv,, respectively, the nuclear quadrupole coupling pararn

n=1- (vs — 1,.)I3K, atg,. [46] eters are given bylQ, 39

The nuclear hyperfine tensor componenss,,(A,, A,) can K=(v-+v,)/6 [47]
then be derived to high accuracy by usikg n, and Muha'’s n = vy 2K. (48]
formulas for the dg band (Table 1).

The importance of using a proper analysis and not relying ¢éinone attempts to apply this analysis to the calculated spect
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(A)yg//AIIP from eachm, spin manifold, while the single-quantum lines

' from both manifolds will be broad and weak. If the single-
quantum peaks from ESEEM spectra obtained at single-cry
tal-like g-value positionsd, andg,) are detected, the analysis
will follow the previous case. Otherwise, the nuclear quadru
pole coupling parameters may not be well determined.

23
22

21

(iv-b). Rhombic g- and hyperfine tensors (noncoaxial tensors
Figure 5B shows the effect on thtN ESEEM pattern of rotating
the nuclear quadrupole axes, while preserving the coaxial orie
tation of the nuclear hyperfine tensor wiftiensor, as in Fig. 5A.
In the numerical calculation for Fig. 5B, the nuclear quadrupol
principal axis P;,) lies in theg, — g, plane (rotating about thg,
or P,y axis); the angle between tigeaxis andP,, axis is set to be
15° In Fig. 5A, where all tensors are coaxial, the lines of th
triangles are almost straight and represent single-frequency tu
ing points (@v/ds), = O, wheres represents the path satisfying
g(6, ) = g). As discussed in great detail in earlier analyses ¢
orientation-selective ENDORL(3-5, when the nuclear quadru-
pole axes are rotated in tige — g, plane (about,) as in Fig. 5B,
the mixing of Py« andP,, causes the peak represented by the lin
in Fig. 5A that connectsi,, g,] and [v.,, g,] to split into two, and
the vertex frequencies no longer are given by Table 1. Comparir
Figs. 5A and 5B clearly shows this behavior forandv;; for this
choice of a modest rotation, the splitting is not well observed i
the v, band. If the nuclear quadrupole axiB,§) is located be-
tween theg, andg, axes, the lines connecting,, g,] and [v»,, g,]
for v, band and ¢,,, 9,] and [v4,, g,] for v; band are split instead.
Figure 5B shows that the pattern for the dgq band also changes
very similar ways to the fundamental bands of thepin mani-
fold. Because the quadrupole tensor is rotated imgthe g, plane
(aboutg,), the outermost turning-point curve connectigndg,
is split into two curves.

Frequency (MHz) Figure 5C presents the ESEEM pattern whenghand the

FIG. 5. 2D contour map of ESEEM simulation as a function of g—valuzpuc;leajr quadrUp_OIe tensor remain CoaXIa_L but the nucle
and nuclear transition frequency. Simulation parameters: microwave fldyperfine tensor is rotated about #eor A, axis so that thé\,
quency= 9.5 GHz,g = [2.3 2.01 1.8] A = [2.6 2.0 1.7] MHz,e’qQ = 2.1 axis is ong, — g, plane. Compared with Fig. 5B where the
MHz, andn = 0.6. ESEEM linewidth (Gaussian) is 0.05 MHz. Relativenyclear quadrup0|e axes are rotated, the bands i ttmeni-
orientations ofg-, hyperfine A), and nuclear quadrupol®) tensors are (A) fold (v,, v, v5) look the same in both cases because the patte
dlAlP, (B) gllAfP, P-tensor rotates 15° frong-tensor abouty,, 2(g, ~ . . . . .
P.) = 15°, and (C)glPJA, A-tensor rotates 15° frong-tensor aboug,, 1S determined by the relative orientation of the nuclear hype
2(g, ~ A,) = 15°. EPR linewidth is assumed to be zero. fine and quadrupole tensors, but the dg bands iBthranifold
look different because this pattern is determined by the relati
orientation of theg- and the hyperfine tensors. A closer look at
the dg bands in Figs. 5B and 5C shows that the overs
] - behavior of the ESEEM pattern is similar: the curves connec
n = 0.843. Both calculated parameters differ from the mplﬁt‘g [Vege O] @nd [ves 0] are split into two in both figures.
values ofe’qQ = 2.1 MHz,n = 0.6 When the three tensorg, A, andP, are not all coaxial, the

Whenw > 1 in botha and B spin manifolds, the nuclear esegwm pattern becomes still more complicated, with other line
spin states in both manifolds are mostly states, and ESEEM j, g 5a spiitting upon rotations involving additional Euler

from.both manifolds §how the same characteristics as foﬁth%ngles (around otheg-tensor axes). The principles governing
manifold of the previous case. Therefore, one expects SPeGliase effects are the same as those that determine orientat
to be dominated by two double-quantum transition lines, OREactive ENDOR patterri(3-§. The procedures by which the

“The discrepancy of double-quantum frequencies in between orientaticgp' pattems' are fitinvolve generating .the best p9§3ible descripti
selective and spherically averaged spectra was noticed by Eulaki(35).  using coaxial tensors, then introducing the minimal number ¢

B)g// AHP

23

22

21 r

=11]
20

18 g6 . . 1.8 22 40 42 44 46 48 50

of Figure 5A, then the spectrum @t gives e’qQ = 2.26
MHz, n = 0.63, whereas that &, givese’qQ = 2.1 MHz,
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TABLE 1
ESEEM Frequencies of the System with S = 1 and | = 1 for g/A//P
Frequencies
g-value n==1 n= =2 n==*=3

9.’ [4(—vy = AJ2)? + (3 + 1)°K?™? {=3(1 — K + [4(—vy = AJ2)? {3(1 — MK + [4(—vy = AJ2)?

+ (3 + 1)’K V2 + (3 + 1)’K V2
9,° {3(1 + MK + [4(—vy = AJ2)° {3(1 + K — [4(—vy = AJ2)? [4(—vy = AJ2)* + (3 — m)°K"?

+ (3 _ ’T])ZKZ] 112}/2 + (3 _ ’T])ZKZ] 112}/2

g,° 3K + [(—vy = AJ2)* + 1n?K3M? 2[(—vy £ AJ2)* + n?K3M2 3K — [(—vy = AJ2)* + 1?K3*M?
® Either + or — indicatesm; = —3 or +3 electron spin manifold, respectively.

® Single-crystal-like spectrum.
° The frequencies represent only the orientatioHgf/y-axis out of all the magnetic field orientations satisfymguw = gyBHo.

rotations needed to satisfactorily describe the results. In the Agcause more than offé\ nucleus gives rise to the modulation in
pendix we present sample ESEEM calculations in which no twese proteins, and the shaded features are enough to analyze
interaction tensors are coaxial (Fig. Al). spectra, we do not consider other features.

(v). N ESEEM of nitrogenase MoFe proteinThe resting If we begin by assuming that all the interactions are coaxic

state FeMo-cofactor of the nitrogenase MoFe protein showd%:: hyperfine, and nuclear quadrupole tensors), the first step
S = ? EPR signal ¢,, = 4.33, 3.77, 2.01)Previous analysis of the frequencies at the three vertices of the triangul

=32 X )
ESEEM studies of nitrogenase fra®ostridium pasteurianum Patterns in the 2D (frequency \gs) ESEEM; those frequen-
and Azotobacter vinelandi{ Av1) revealed strondN modu- CI€S: @S measured from Fig. 6A, are collected in Table 2. TF

lations @3, 37, 33. In those studies, the ESEEM spectra werduclear quadrupole parameters then are obtained by adapt
collected and analyzed at only a few g-value positions. THIS- [45] and [46] as

spectra showed four ESEEM lines, as is found under near ’

cancellation conditions, and their approximate analysis was not K= (v1+ v5)/6 = 0.54 MHz atg;

basgd on the full orientatiqn-selective ESEEM approach..To n=1- (vs— v,)/3K = 0.59 atg,.

achieve a complete analysis, we collected three-pulse, stimu-

lated ESEEM spectra at numerous field positions across g dqg band is more sensitive to the hyperfine tensor value

EPR envelope ofvl as shown in Fig. 6A7(~ 200 ns, the anq from Muha’s frequency formulas (Table B) 85),
time interval between the first and the second pulses). As

mentioned in Section (i-b), because the transformation to fic- dg=[4(—vy + AU2)% + (3 + 1)2K?]Y?
titious spin S’ = 3 introduces anisotropic behavior into the g
hyperfine interaction even if the intrinsic coupling is isotropic, = 3.65 MHz atg;,

the complete analysis of the nitrogend4¢ ESEEM must be

performed by following the method developed in Section (iv). dg=[4(=wy + AJ/2)* + (3 — m) K"

While the individual ESEEM spectra in Fig. 6A appear typical = 3.31 MHz atg],
of near cancellation, the 2D pattern exhibited by spectra collected
across the EPR spectrum indicates a more complicated situation. dg= 2[(—vy + AJ2)2 + n2K?]|Y2

According to the discussion of rhombic tensors in the above
sections, from low to high frequency we assign thev;, andv,
bands to one electron-spin manifold and the dq band to the other
manifold. As seen in the figure, &, the N modulation is Which gives A, Ay, Aj] = [2.11, 1.93, 1.17]MHz. The
dominated by the, and dq bands. The 2D patterns for v, and hyperfine values thus obtained are in the fictitious spin repr
most especially the dg band show a triangle-like shape charac&&dtation. Since the intrinsic g-values € 3) for Av1 deviate
istic of a rhombic N hyperfine interaction, with maximum negligibly from g = 2.0, theintrinsic hyperfine values, as
breadth at,. Note further that thes, and v, bands cross each calculated from Eq. [12], become

other atg ~ 2.2. Finally, the modulation almost disappearg,at

In addition to the strong peaks (shaded) in the wild-type (Fig. 6A) Al =Agjlg, = Agj/2, [49]
and mutant proteins (Fig. A2), there are also weak features. Those

could be single-quantum peaks, arising from orientation selectiovhich gives RA,, A,, A,] = [0.98, 1.02, 1.14]MHz.

from the electron manifold that gives the dq band. However, Using the equations presented above, theESEEM spec-

= 3.3 MHz atg,,
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TABLE 2

rived nuclear quadrupole tensor and the hyperfine tensor. Th@bserved X-Band ““N ESEEM Frequencies of MoFe Protein

contour map of the simulation is displayed on a 2D plot in Fig.
6B. In the simulation, the pseudonuclear Zeeman effect was

(A) Experiment

428
4.12
3.98
3.85
3.78
3.66
3.55

- 321
3.07

2.85
2.70
2.55
2.39
225
2.12

2.06
2.01

IIHIHIIIIIIHIIIII|IIIIHHIIII|IIIIII|HHIIIII|

0 1 2 3 4 5
(B) Simulation

36t
281

4.0 Fooonfilte | N

3.4 Lol S ¥ |

3.0 Pl

ag b Al ]

Frequency (MHz)

Frequency (MHz)

g'-value vy v, Vs dq H (G) vy (MHz)
4.33 @)° 2.24 0.78 1.46 3.65 1587 0.488
3.77 @)° 2.04 0.58 1.46 3.31 1796 0.553
2.01 @)* 2.19 1.12 1.07 3.3 3412 1.050

® Single-crystal-like spectrum.
® The frequencies are the values at the vertices of each triangular ESEE
band in 2D domain. (See Theory and Application.)

included, but thé*N nuclear hyperfine coupling constant is too
small to give rise to any observable effect(B.A/ 2g,BnA =
0.075, sed=gs. [14] and [16]). The simulation with all tensors
coaxial shows a good fit to the experimental data, and this w:
confirmed by extensive calculations with noncoaxial tensor:
which were performed to test the assumption of coaxial ter
sors. The simulations yielded the intrinsic hyperfine interactio
tensor, RA,, A,, A,] = [0.98 (0.03), 1.02 (0.03), 1.14
(0.09)] MHz, and quadrupole parameterg’qQ = 2.17
(0.13) MHz, andn = 0.59 (0.07), with all tensors indeed
coaxial with theg’'-frame (fine structure) (Table 3). The un-
certainty of the rotation angles (honcoaxiality) is also include
in Table 3. The previous approximate analysis yielded qua
rupole values ofe’qQ = 2.2 MHz andn = 0.5 (23), in good
agreement with those reported here.

For a system with noncoaxial tensor, the analytical extrac
tion of the tensor values as above is not possible. But, as
ENDOR spectroscopy, we can still derive the values by sirr
ulating a 2D, [g, v], pattern using the procedure presented it
the above Section (iv). In fact, the analysistd ESEEM from
some mutants of the MoFe protein yielded noncoaxial tenso
in some cases. Table 3 includes the hyperfine and quadrup
parameters for several mutants of the wild-type MoFe proteit
the experimental data and simulations for these mutants &
displayed in Fig. A2 of the Appendix.

EXPERIMENTAL

The nitrogenase MoFe protein was prepared as previous
described 39—-41). Three-pulse or stimulated electron spin
echoes were obtained on a locally constructed pulsed EF
spectrometer described elsewhere, with pulse width of 16 1
and pulse power of~1 W (42). Three-pulse ESEEM time

FIG. 6. (A) Field-dependent three-pulse ESEEM FT spectra obtainedomain data were collected by changing the time inter¥al (
across the EPR spectrum of wild-type MoFe protein and (B) correspondipgtween the second and the third pulseskat Bhe frequency-

simulation. Experimental conditions: microwave frequency, 9.547 GHz;
124 ~ 152 ns. Simulation parameters: A [0.98 1.02 1.14] MHzg*qQ =
2.17MHz, andn = 0.59 witht = 150 ns and a Gaussian linewidth of 0.05

domain ESEEM spectra were obtained by Fourier transform:
tion (FT) of the time domain data. The FT was accompanie

MHz. All the tensors are coaxial. Data and simulation are reproduced frofith modified Mims’ “dead time” reconstruction routind3).

Ref. (22).

Computer simulation programs were written in MATLAB soft-
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TABLE 3
“N Hyperfine and Nuclear Quadrupole Coupling Tensors of Wild-Type and Mutant Nitrogenase MoFe Proteins®
Hyperfine coupling Nuclear quadrupole couplifig
Mutantg Tensor (MHz) Orientation (°§ e’qQ ) Orientation (°§
Wild-type
a-195°" 0.98 (3), 1.02 (3), 1.14 (9) 0,0,0 2.17 (13) 0.59 (7) 0,0,0
a-96"°
a_96G\n
a-359° 0.4 (1), 0.5 (3), 0.4 (3) ! 3.5(1) 0.35(5) 0, 60, 20
a-195™"
-381" 0, 60, 20
«-381" 0.4 (1), 0.6 (3), 0.4 (3) f 3.4 (1) 0.40 (5)
«-381"

* Reproduced from Ref2Q).

® Each mutant MoFe protein is designated by the name of the sukwiitthis case), the number of the amino acid position substituted, followed by tt
three-letter code for the substituting amino acid in superscript form.

° The values in parentheses are the uncertainty limit in the last digits.

Y The tensor values are the intrinsic hyperfine coupling valugg)(in the real spinS = £, representation (See Eq. [49]).

° Euler anglesd;, B, y) with respect to the-tensor frame. Limit of the uncertainty is10° (26, 27).

" Because anisotropic portion of the hyperfine tensor is smalhd the hyperfine tensors are set to be coaxial.

ware of The MathWorks, Inc. All calculations were performednalysis for rhrombig- and nuclear hyperfine tensors. Cal-

on PC compatible computers. culations of 2D, g, v], **N ESEEM patterns were presented
in the cases of coaxial and noncoaxial tensays Quclear
CONCLUSION hyperfine, and quadrupole tensors). Analytical solution

were derived for thé’N-hyperfine and the quadrupole ten-
We have presented general equations for analyzing oggrs when the tensors are coaxial with gagnsor reference
entation-selective“N (I = 1) ESEEM from a Kramers frame. Finally, based on the procedure developed,'iNe
doublet withg-resolved EPR spectra. We first used them toSEEM of nitrogenase MoFe protein and several of it
reexamine the modulation amplitudes as a function of thgutants was analyzed to obtain the hyperfine and nucle

nuclear hyperfine £) and quadrupole ) coupling con- quadrupole tensor for*N nuclei that interact with the
stants relative to the nuclear Zeeman interactiey) (n the FeMo-cofactor.

case of isotropic g- and hyperfine interaction. In addition to

the well-known near/exact cancellation case that gives rise

to strong modulation for isotropic hyperfine coupling when ACKNOWLEDGMENTS
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APPENDIX
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FIG. Al. 2D contour map of ESEEM simulation as a functiongefalue and nuclear transition frequency. Simulation Parameters: microwave frequer
= 9.5 GHz,g = [2.3 2.01 1.8]A = [2.6 2.0 1.7] MHz,e’qQ = 2.1 MHz, andn = 0.6. ESEEM linewidth (Gaussian) is 0.05 MHz. Relative orientations of
g-, hyperfine A), and nuclear quadrupol®) tensors are (A J| A || P, Euler anglesd, 8, ) (26, 27) of A- andP-tensors with respect tg-tensor, [0 15° 0],
(B) g A | P, Euler angles oA-tensor, [15° 0 0], Euler angles &ttensor with respect tg-tensor, [0 15° 0], (Ciy [ A || P, Euler angles ofA- and P-tensors
with respect tay-tensor, [15° 15° 0], and (DJ || A | P, Euler angles of-tensor, [20° 20° 0], Euler angles Bftensor with respect tg-tensor, [10 10° 0]. EPR
linewidth is assumed as zero.
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(A) 0.-359Lys (Experiment) (C) a-381Leu (Experiment)

vV V3 V2 V3

Vi qu
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(B) a-359Mys (Simulation) (D) a-381Leu (Simulation)

T T | T T

.

Frequency (MHz) Frequency (MHz)

FIG. A2. Field-dependent three-pulse ESEEM FT spectra obtained across the EPR spectra ob#35¢4) and (C)a-381"" MoFe proteins and (B, D)
corresponding simulations. Experimental conditions: microwave frequency, (A) 9.640 and (C) 9.611 €424 ~ 152 ns. Simulation parameters= 150
ns, for (B)A = [0.4 0.5 0.4] MHz,e’qQ = 3.5 MHz, andn = 0.35, and for (D)A = [0.4 0.6 0.4] MHz,e’qQ = 3.4 MHz, andn = 0.40. In the simulations,
g- and the hyperfine tensors are coaxial and Euler angleg,(y) of nuclear quadrupole tensor with respecigttensor are [0° 60° 20°] in both mutants. A
Gaussian linewidth of 0.05 MHz are used. Data and simulation are reproduced from ref. 22.
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